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Introduction

There can hardly be any doubt about the impor-
tance and usefulness of simulation as a tool in geostat-
istics, particularly conditional simulation. Beginning
with the early work of Journel which popularized its
use in mine planning and his later work in applying it
to reservoir modeling, the extensive activity of Gel-
har’s group at MIT in applying simulation to problems
in hydrology as well as many others who have extended
the use of simulation including that of Gotway, Zim-
merman and Zimmerman for evaluating variogram es-
timators, it has become as well known as the various
= kriging methods. However there may be a lack of clar-
ity about what is meant by conditional simulation at
Jeast in some practical senses. Most, if not all, of geos-
tatistics is based on the use of arandom function model.
The random function may be thought of as a random
variable whose "values” are functions, i.e., realiza-
tions. In real applications, neither the random function
nor even one realization is completely known and the
data is considered to be a non-random sample fromone
realization of the random function although it is not
known which realization. Even a countably infinite
sample would be insufficient to uniquely characterize
the realization. Fortunately kriging (in its various
forms) is invariant with respect to the choice of the real-
ization, as shown by Matheron. The disadvantage of
kriging is that it smoothes the data whereas simulation
is intended to retain and exhibit the spatial variability.

Conditional simulation then is a process for gener-
ating the remainder (or more precisely, a part of the re-
mainder) of one or more of the realizations of the ran-
dom function from which the data could be considered
a sample. To generate an entire realization it would be
necessary to obtain at least an implicit analytic repre-
sentation for that particular realization. In practice

however the real objective is merely to generate the *
values of the realization at a finite number of points,
usually taken to be on a grid. The “process” is itself
realized by an algorithm and then the algorithm is im-
plemented by a program, i.e., encoded in one of the
standard programming languages and executed on a
particular computer. Several ideas are implicit in the
use of conditional simulation in geostatistics but they
do not seem to receive much attention in the literature.
One such idea is that of the “'equivalence” of different
algorithms and a second is the equivalence of different
programs for the same algorithm and finally an insensi-
tivity to hardware. Many of the early papers were de-
voted to showing that a "new” algorithm or a variation
on a particular algorithm required less CPU time or less
memory than another algorithm. Less CPU time or less
memory was (and still is) considered a desirable attrib-
ute and hence one algorithm may be judged “better” by
virtue of one or both of these characteristics. How
should we compare algorithms and does it make any
difference which algorithm we use? Do CPU time and
memory requirements provide adequate criteria for
comparing algorithms and programs?

Equivalence

While it is a characterization that is difficult to use in
any practical sense, one way to characterize a random
function is to consider the set of all possible realiza-
tions together with a probability distribution on those
realizations. In geostatistics the realizations are consid-
ered to be “equally likely”. Two random functions
would be "identical” if they had the same set of realiza-
tions and the same probability distribution. It would be
tempting to say that they are exactly the same but in the
same sense that we can have identically distributed but
distinct random variables we could have “identical”
but distinct random functions. This suggests consider-
ing two algorithms equivalent if they generate the same
set of realizations although not necessarily in the same
order. Since it is not possible to generate all possible
realizations using a particular algorithm nor even to
generate all of one realization, are there practical ways
to test for the equivalence of two algorithms? Does it
matter if we use two non-equivalent algorithms? Are
there some applications of conditional simulation for
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how do we distinguish them? If two algorithms

- ~fere equivalent in the sense above but produced the re-

‘walizations in reverse order how would we detect the

equivalence if only a finite number of realizations are
generated?

[ it doesn’t matter and others for which it does? If

Invariance

All of the methods, e.g., algorithms, that have been pro-
posed so far are based on preserving several properties
of the” random function. First, the ’data” is honored.
Secondly, the spatial correlation structure is preserved
(which usually means that the second moment is pre-
served). Thirdly, the mean is preserved and finally it is
usually considered desirable to preserve the marginal
distribution. With perhaps the exception of sequential
Gaussian simulation (SGS) none of the algorithms uti-
lize nor provide any information about higher order
moments nor any information about joint distributions.
What do these three conditions actually imply? Honor-
ing the data: This property is easily described. The val-
+ wues of the (simulated) realization at data locations are
exactly the data values at the respective locations.Pres-
ervation of the spatial correlation structure: The stan-
dard algorithms (Turning Bands, L-U decomposition,
sequential Gaussian) preserve the variogram or covari-
ance on the average. The average is with respect to the
set of all possible realizations. The sample variogram
(or other estimator) is a form of a spatial average and
itis well-known that its use implies a form of ergodic-
ity. Itis common in evaluating a proposed algorithm (or
even in an application of a known method) to not only
compute the sample variogram for each realization but
also to show the average of the sample variograms
across realizations. Because nearly all of the standard
methods are relatively computer intensive in one way
or another it is rare to generate more than a small num-
ber of realizations especially if the number of grid loca-
tions is large which it often is (small is a relative term
and is steadily increasing as computational power in-
creases). Without some form of multivariate distribu-
tion assumptions it is difficult to model the behavior of
the sample variogram and hence to model the behavior
of the average sample variogram as the number of real-
izations gets large. Davis and Borgman obtained both

theoretical asymptotic and some practical results but
they are difficult to use in any specific application.
How rapidly does the average sample variogram (or
other spatial structure function) converge to the “'true”
spatial structure function (the one used to generate the
realizations)? How rapidly should it converge and how
do the convergence rates compare for different algo-
rithms? Should the convergence rate be used as a crite-
rion for comparing algorithms? How do we distinguish
between the properties of the variogram/covariance es-
timator and those of the simulation algorithm?
Since only second moment properties are used to char-
acterize the random function for which new realiza-
tions are to be generated, do different algorithms gener-
ate realizations of different random functions (which
have the same second moment properties) or do they
merely generate different realizations of the same ran-
dom function? If the simulated values were to be used
for kriging then the question of “different” random
functions would be of no importance, for other applica-
tions it is not so obvious. As is well known, the sample
variogram is not a particularly well- behaved estimator
(even though it is theoretically unbiased). If simulated
data is used to evaluate variogram estimators or the be-
havior of the sample variogram then there is an as-
sumption that the simulation method is without flaws,
conversely if the sample variogram (or other estimator)
is used to evaluate the behavior of the simulation tech-
nique then there is an implicit assumption that the esti-
mator is well-behaved. These assumptions can not be
independently checked. Hence it is important to recog-
nize that when simulated data is used to test some other
algorithm that there are two sources of error or variabil-
ity which will be difficult to separate. It might be beticr
to utilize multiple simulation algorithms. Simu-
lated Annealing has recently attracted attention as a
conditional simulation method that is ’better” than oth-
er methods. The algorithm depends on forcing the esti-
mated spatial correlation function (computed from onc
realization) to be close to the theoretical. However
Simulated Annealing was originally introduced as an
optimization method, not a simulation method. While
arandom function could be such that for all realizations
the estimated spatial correlation function would coin-
cide with or very closely match the theoretical func-
tion, that is a severe restriction on the random function
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it overlooks a crucial point. The user must still de-
de how "close” the sample variogram must be to the
. Meoretical model, i.e., when is the algorithm stopped.
“ How does this choice affect the generated realization
and how much variability is there between realiza-
tions? The spatial correlation estimator is very much
dependent on the data location pattern, in the case of a
grid it would depend on the grid spacing and orienta-
tion. This is true independently of the method used to
generate the realization. There will be an interaction
between the range of the variogram/covariance and the
grid mesh used in generating new realizations. For
simulated annealing to be an appropriate simulation al-
gorithm then its application should be independent of
the grid mesh. This issue seems not to have been ad-
dressed as yet. Preservation of the marginal distribu-
tion: The Turning Bands and L-U methods both gener-
ate the simulated values as linear combinations of
uncorrelated random numbers. As has been noted by
many authors it is preferable to begin with a standard
Normal marginal distribution since such a distribution
is preserved and not distorted by the Central Limit
 Theorem effect. The marginal distribution that is to be
preserved is actually a spatial distribution and the ex-
tent to which it reflects the marginal distribution of the
random function depends on an assumption of (strong)
stationarity. The marginal distribution(s) of the simu-
lated realizations are likewise spatial distributions and
again an assumption-of stationarity is needed. Similar
disparities and assumptions are involved when consid-
ering the invariance of the first moment. The L-U
method depends on the factorization of the covariance
matrix but the square root has the same property. How-
ever it has been shown that the marginal distribution
can not be the same for both L-U and square root fac-
torizations. In order to begin with a standard Nor-
mal marginal distribution, it is necessary to transform
the data. In particular this means that the original dis-
tribution must be determined but a finite data set will
not uniquely determine the distribution. Using the spa-
tial distribution to determine the marginal distribution
implies an assumption of stationarity. After simulation
the simulated values must be re—transformed, this re—
transformation is not uniquely determined nor can it be
uniquely modeled. The inverse transformation may not
be one-to—one.

Summary

Conditional simulation is an extremely useful tool in
geostatistics but the relationship between different al-
gorithms needs to be re—-examined. In the past there
seems to have been an implicit assumption that any two
methods were equivalent (but without an explicit un-
derstanding of what equivalence meant) and hence
only computational discrepancies were important.
Comparisons should be based on more than discrepan-
cies in computer time or the size of the grids that can be
simulated.
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Sometime ago 1 was asked to produce a rationalised es-
timate of the benefits of continuing exploration for gold
on a property position where several significant indi-
vidual deposits had been identified, drilled and eva-
luated. A larger resource base was needed to amortise
the estimated capital expenditure and a viable estimate
of the unknown was needed in a very short period of
tume.

I referred back to an amusing paper published in 1977
in ” Mathematical Geology” (Rowlands et al. 1977)
and concluded that their application of Zipf’s Law was
appropriate to my immediate problem. The two Austra-
lian authors had applied the Law ( rule is more correct)
to firstly the size and ranking of deposits in the Zam-
bian Copperbelt and also to the Western Australian
gold province with the objective of quantifying the
number and size of as-yet undiscovered deposits with-
in the partially explored districts.

Zipf’s’Law’ is a limiting case of the better known Pare-
to Distribution and can be non-mathematically de-
scribed as a series where the biggest is twice as big as
second larges, three times as big as the third largest and
so on with decreasing size. If we have a number of
known deposits of reasonabley well defined size in our
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